

3

Table 1. Examples of Adaptive Metabolic Cellular Stress Response-Based Pharmacological Strategies to Ameliorate Age-Related Neurological Deficits and Diseases			
Agent	Mechanism of Action	Preclinical Findings	References
Ketone (ester)	energy substrate	improves cognition and endurance	Murray et al., 2016; Kashiwaya et al., 2000, 2013; Marosi et al., 2016
	induces BDNF expression	beneficial in seizure, AD, and PD models	
Nicotinamide riboside	bolsters bioenergetics and sirtuin activity	extends lifespan and beneficial in AD model	Gong et al., 2013; Zhang et al., 2016a; Hou et al., 2018
2,4-dinitrophenol	mild mitochondrial uncoupling	beneficial in TBI, AD, and PD models	Pandya et al., 2007; Geisler et al., 2017; Lee et al., 2017
	adaptive cellular stress responses		
Diazoxide	K-ATP channel opener	beneficial in stroke, PD, and AD models	Liu et al., 2002, 2010; Yang et al., 2005
2-deoxyglucose	induces adaptive cellular stress responses	neuroprotective in stroke and PD models	Duan and Mattson, 1999; Yu and Mattson, 1999
Rapamycin	mTOR inhibitor and autophagy inducer	beneficial in stroke, AD, and PD models	Buckley et al., 2014; Spilman et al., 2010; Siddiqui et al., 2015
		extends lifespan	
Exendin-4 and liraglutide	GLP-1R agonist and insulin sensitizer	beneficial in stroke, AD, and PD models	Li et al., 2009, 2010
	induces BDNF expression		
Metformin	inhibits liver glucose production, activates AMP, and inhibits mTOR	beneficial in PD and AD models	Martin-Montalvo et al., 2013; Bayliss et al., 2016; Niccoli et al., 2016
		extends lifespan	

4/21/2025

4/21/2025

39

 $\langle \rangle$

Why Non-Thermal Low-Level Laser (NTLLL)?

- Non-Invasive
- No Downtime
- No Pain
- Short Treatment Time
- Pain Relieving Properties
- Decreases Swelling
- Improves Blood Flow
- Enhances Energy
 Production
- Optimizes Mitochondrial Function

- Anti-Inflammatory
- Immune-Boosting Properties
- Promotes Stem-Cell Production
- Decreases Stress Hormones
- Neuroprotective
- Downregulates Stress Responses in Brain
- Accelerated Wound Healing
- Upregulates Collagen Production
- Non-Invasive Fat Loss
- Enhanced Cellular Repair

